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1 Introduction: Ugly Code that Runs

Because there is no comprehensive official R style manual, students and package writers seem
to think that there is no style whatsoever to be followed. While it may be true that “ugly code
runs,” it is also 1) difficult to read and 2) frustrating to extend, and 3) tiring to debug. Code is
a language, a medium of communication, and one should not feel free no ignore its customs.

After students have finished a semester of statistics with R, they may be ready to start preparing
functions or packages. Those R users are the ones I’m trying to address with this note. It is
important to realize that the readability of code makes a difference. It sometimes difficult to
know that there is a “right way” and a “wrong way” because there are so many examples to
study on CRAN.

This note describes R style from an Rchaeological1 perspective. By examining the work of the
R Core Development Team (R Core Team, 2012) and other notable package writers, we are able
to discern an implicit style guide. However, this note is not “official” or endorsed from R Core.2

With one exception at the end of this note, none of the advice here is “my” advice. Instead, it
is my best description of the standards followed by the leading R programmers.

At one point, the only guide was the Google R style guide,3 which was used as a policy for
R-related “Google Summer of Code” projects. There are many excellent suggestions in Hadley
Wickham’s Style Guide.4 In what follows, I’ll try to explain why there are some variations
among these projects and offer some advice about how we (the users) should sort through their
advice.

2 Rchaeological Methodology

I am a student of R as a programming language. I am also student of the R community as
an international success that created a working open source computer program. One of the
most interesting differences between R and other open source projects I have observed is that R
attracts non-programmers. There is an abundance of statistical novices and untrained computer
programmers in the R user community. Many students begin with R as a way of learning about
computer programming. In contrast, the developers of R are world-class software engineers.

1Definitions:

Rchaeology: The study of R programming by investigation of R source code. It is the effort to discern the
programming strategies, idioms, and style of R programmers in order to better communicate with them.

Rchaeologist: One who practices Rchaeology.

2Yet :)
3http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
4https://github.com/hadley/devtools/wiki/Style
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They have formal training in computer programming and years of experience in a variety of
computer languages. The diversity creates a healthy tension that is easy to see in the r-help
email list or on Web forums for R users.

2.1 “Use the Source, Luke,” said Obi-Wan

What should R code look like? Stop guessing. The implicit style guide for R is the R source
code itself. If users want to communicate with R Core developers, they ought to communicate
using the style that developers use.

I’m often surprised to find that R users–even experienced ones–have never looked at the R
source code. Before going any further,

Open the source code for R. I mean, literally, download R-2.15.3.tar.gz (or whatever
is current when you read this). Unpack that, navigate to the directory src/library/s-
tats/R. Open the file “lm.R”.

That’s what R code should look like.

Browse other R files in the source code. Notice the files are suffixed by R, not r!

Then go read a lot of R packages. Begin with the recommended packages (in the R source code
under src/library/Recommended). Then draw some samples from CRAN. Choose packages that
are prepared by members of R Core, and then sample a few packages that are widely installed,
such as John Fox’s car package (Fox and Weisberg, 2011).

After that, pick a random sample of packages on CRAN. Don’t be surprised by ugly code in a
randomly chosen R package.

2.2 Notice How R Describes its Own Style

Type the name of a function at the R command prompt. That is the same as using the function
called print.function () to review the contents of a function from an R package. For example,
try “lm”. The first few lines are

> lm
func t i on ( formula , data , subset , weights , na .ac t ion , method = ”qr ” ,

model = TRUE, x = FALSE, y = FALSE, qr = TRUE, s i n g u l a r . o k =
TRUE,

c o n t r a s t s = NULL, o f f s e t , . . . )
{

r e t . x <− x
r e t . y <− y
c l <− match . ca l l ( )
mf <− match . ca l l ( expand.dots = FALSE)
m <− match ( c ( ”formula ” , ”data ” , ”subset ” , ”weights ” , ”n a . a c t i o n ”

,
” o f f s e t ”) , names (mf) , 0L)

mf <− mf [ c (1L , m) ]
mf$ d r o p . u n u s e d . l e v e l s <− TRUE
mf [ [ 1 L ] ] <− as.name ( ”model . frame ”)
mf <− eva l (mf , parent . f rame ( ) )
i f ( method == ”model . frame ”)

re turn (mf)
e l s e i f ( method != ”qr ”)

warning ( g e t t e x t f ( ”method = '%s ' i s not supported . Using ' qr '

” ,
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method ) , domain = NA)

That’s quite a bit like the code in the file lm.R, but it is not exactly the same. Even if the code
in lm.R were an ugly, horrible mess, its output in the terminal would be indented and spaced
just right. That is an important Rchaeological finding!

Why can there be a difference between the code for a function in a file (like “lm.R”) and the
output of the command (like “lm”)? Admittedly, this is difficult to understand. The on-screen
output is not (by default, anyway) the source that went into R, but rather it is R’s rendition
of the internal structure of the function. I recently had an epiphany while reading a section
in the Writing R Extensions manual called “Tidying R code”. That title is a bit misleading.
It is not about tidying R source code; rather, it is about beautifying the rendition of internal
structures for the terminal. “R treats function code loaded from packages and code entered by
users differently. By default code entered by users has the source code stored internally, and
when the function is listed, the original source is reproduced. Loading code from a package (by
default) discards the source code, and the function listing is re-created from the parse tree of
the function.” That is to say, if ugly code is syntatically valid, R can parse it and structure it
according to the internal dictates of the R runtime system, and when we ask to see the function,
we get a nice looking result.

2.3 Formulate SEA estimates.

As already noted, there is no mandatory style for R code. The R Internals manual has a section
“R coding standards,” but it is quite brief. The main point that most readers take away concerns
indentation: subsections in code should be preceded by 4 blank spaces, not a tab character.

But there is a larger point in R Internals, but novices don’t recognize the importance of it. R
is a GNU project, and there are GNU coding standards.5 The R project’s C code follows the
standard closely. In the entire body of the R source code, we find the GNU thumb print. The
importance of that fact is missed by untrained readers, who mistake the lack of a comprehensive
discussion of style for an encouragement to “do anything you want.”

In the following, I will try to point out the areas of greatest agreement by assigning an SEA
score to each point. SEA stands for “Subjective and completely unscientific personal Estimate
of Agreement.” These are my Bayesian priors. If I could survey my favorite R programmers,
I’d find some variety, and I am trying to make it clear where the disagreements might lie. But,
then again, I may have been fooling myself. It has recently been suggested to me that these
recommendations are not descriptions of the Rchaeological community I’m studying, they are
rather my personal litmus test for admirable R programmers.

3 Nearly Universally accepted standards.

3.1 (SEA 1.0) Indentation of code sections is required.

This is explicitly spelled out in the R documentation. No tabs! Insert 4 blank spaces. Personally,
I prefer 2 spaces, which has been the default in Emacs. But I’m changing my code to use 4
spaces. If you find my code with 2 spaces, please accept this apology and believe that it is an
oversight.

3.2 (SEA .95). Use “<-”, not “=”, for assignments.

One cannot find the equal sign used for assignments in any file in the R source code. Nor can
one find it in any of the Recommended packages (so far as I can tell).

5http://www.gnu.org/prep/standards/standard.html
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Students who have learned R in introductory textbooks are sometimes shocked to learn that
they were taught wrong. I’m sympathetic to their outrage. How can this be?

The equal sign was used by mistake so frequently that the R system was re-designed to tolerate
that mistake. Most usages of the equal sign for assignments do not cause runtime errors. Not
all possible problems were eliminated, however. Thus the equal sign is not recommended, it is
tolerated. Nevertheless, A horrible profusion of textbooks and packages ensued using the equal
sign for assignment.

3.3 (SEA .98) Blank spaces around symbols are required.

This is a general GNU coding standard.

1. Insert spaces before and after

a) mathematical symbols like: “=”, ”<-”, “<”, “*”, ”+”

b) R binary operations like: “%*%”, “%o%”, and “%in%”.

2. Put one space after commas.

3. Insert one space before the opening squiggly braces “{”.

4. Put one space after the closing parenthesis “)” and the closing squiggly brace “}”.

This is purely a matter of convention and legibility, it does not affect the “rightness” of code.

Other observations about spaces,

1. Do not insert spaces between function names and their opening parentheses.

2. After reviewing the R source code, I was uncertain about whether one ought to insert one
space after “if” and “for”. From an Rchaeological perspective, this is a little bit perplexing.
In the help page for those terms (see help(“for”)), there is no space after “if” or “for”. In
the R-3.0.0 source code folder src/library/base/R, I count 1741 instances of “if(“ and 683
instances of “if (“. The former style seemed right to me, at least at first, because people
often say that R’s “if” and “for” are functions. I asked for clarification in the R-devel email
list, and Peter Dalgaard explained that the space should be used because those terms are

language constructs (and they are keywords, not names, that’s why ?for won’t
work). The function calls are ‘if‘(fee, {foo}, {fie}) and something rebarbative
for ‘for‘(....).

Besides, both constructs are harder to read without the spaces. (r-devel, April
18, 2013)

For me, that settles the question. For R code, as in C, “if” and “for” should be treated as
keywords, and there would be a space after them, as in “ if (x < 7)”.

3. Do not insert “extra spaces” inside parentheses.

Programmers who have written in the BASH scripting language may recall that a space
inside brackets is required. That training causes me to think that R code is a little bit
“jammed together.” This is pleasant to my eye:

i f ( ( x == 1) & ( y == 2) ) {

but, from an Rchaeological point of view, more the correct style is:

i f ( ( x == 1) & ( y == 2) ) {

The insertion of the interior parentheses for the smaller conditions inside the if statement
is consistent with the GNU standard for C.
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Is there an “argument exception” to the space rule for equal signs?

Package writers are not entirely consistent, and Rchaeologically speaking, we cannot be sure if
these variations are accidental. We sometimes find no spaces, as in

p l o t (x , y , lwd=4, c o l=green , main=”My T i t l e ”)

It would surely be more correct like so:

p l o t (x , y , lwd = 4 , c o l = green , main = ”My T i t l e ”)

Spaces may sometimes be omitted in an effort to keep code on one line. Especially where
publishers are concerned about the use of scarce paper, the omission of spaces around equal
signs is not uncommon. Please note, however, that it is NEVER acceptable to omit the spaces
after commas!

What about indentation of long function declarations?

One of the interesting space related questions is the indentation of function declarations when
there are many arguments. Consider the R source code for the function lm():

lm <− f unc t i on ( formula , data , subset , weights , na .ac t ion ,
method = ”qr ” , model = TRUE, x = FALSE, y = FALSE,
qr = TRUE, s i n g u l a r . o k = TRUE, c o n t r a s t s = NULL,
o f f s e t , . . . )

Note that lines 2-4 are indented under the letter “f” in formula. If the function’s name were
longer, it would push all of that indented code to the right, probably causing line wraps. The
solution is to put the function’s name and the assignment symbol on separate line. This is the
format of R’s function plot.lm().

p l o t . lm <−
f unc t i on (x , which = c (1L : 3L , 5L) , ## was which = 1L:4L,

capt ion = l i s t ( ”Res idua l s vs F i t t ed ” , ”Normal Q−Q” ,
”Scale−Location ” , ”Cook ' s d i s t a nc e ” ,
”Res idua l s vs Leverage ” ,
exp r e s s i on ( ”Cook ' s d i s t vs Leverage ” * h [ i i ] / (1 − h [ i i

] ) ) ) ,
panel = i f ( add.smooth ) panel .smooth e l s e po ints ,
sub . capt i on = NULL, main = ”” ,
ask = prod ( par ( ”mfcol ”) ) < l ength ( which ) &&

d e v . i n t e r a c t i v e ( ) , . . . ,
i d . n = 3 , l a b e l s . i d = names ( r e s i d u a l s ( x ) ) , c e x . i d = 0 .75 ,
q q l i n e = TRUE, c o o k . l e v e l s = c (0 .5 , 1 . 0 ) ,
add.smooth = getOption ( ”add.smooth ”) ,
l a b e l . p o s = c (4 , 2 ) , c e x . c a p t i o n = 1)

{

The continuation is indented to be below the first argument. The benefit of this “declaration by
itself” approach is that the additional lines are always re-formatted with consistent indentation
and we are not creating a huge empty white space due to indentation.

Try formatR::tidy.source()

The advice so far mostly concerns “white space”. We would like a programmer’s text editor to
handle automatically as much of that as possible.
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The R package “formatR” (Xie, 2012) has a function called tidy.source() which can often (but
not always) clean up code. Below I’ve pasted in part of an Emacs session. I wrote a badly
formatted function, myfn(), and copied it to the clipboard, and then tidy.source() reads the
clipboard. It works like magic.

> myfn <− f unc t i on ( x ) { i f ( x < 7) { i = 77 ; p r i n t ( paste ( ”x i s l e s s
than 7 but i i s ” , i ) ) } e l s e { pr in t ( ”x i s e x c e s s i v e ”) }}

> l i b r a r y ( formatR )
> t i d y . s o u r c e ( )
func t i on ( x ) {

i f ( x < 7) {
i = 77
pr in t ( paste ( ”x i s l e s s than 7 but i i s ” , i ) )

} e l s e {
pr in t ( ”x i s e x c e s s i v e ”)

}
}

The tidy.source() function can get rid of equals sign assignments if we ask it to. (In my opinion,
it should do that by default.)

> t i d y . s o u r c e ( source = ”c l i pboa rd ” , r e p l a c e . a s s i g n = TRUE)
func t i on ( x ) {

i f ( x < 7) {
i <− 77
p r in t ( paste ( ”x i s l e s s than 7 but i i s ” , i ) )

} e l s e {
pr in t ( ”x i s e x c e s s i v e ”)

}
}

The tidy.source() function can receive input as files or whole directories.

There are two reasons why tidy.source() is not a panacea. First, by design, tidy.source() will
fail if there are programming errors in the original source code. That leads to a Catch-22. I
want to clean up the code to find out why it does not run, but tidy.source() cannot clean it up
because it does not run. Second, quite often it happens that tidy.source() chokes on unexpected
user code. Especially problematic is code that has comments inserted in unexpected places. For
example, I recently ran tidy.source() on the file emb.r in the package Amelia (Honaker et al.,
2011).

> l i b r a r y ( formatR )
> t i d y . s o u r c e ( ”emb.r ”)
Error in base : : parse ( t ex t = text , s r c f i l e = NULL) :

1 5 2 : 8 8 : unexpected SPECIAL
151 : }
152 : i f ( nco l ( a s .mat r ix ( s t a r t v a l s ) ) == AMp+1 && nrow ( as .mat r ix (

s t a r t v a l s ) ) == AMp+1) %InLiNe IdEnTiFiEr%
∧

I would estimate that tidy.source() fails on about one-third of the R code I randomly select from
CRAN.
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3.4 (SEA .70) The“} else {”policy.

Did you notice “} else {” in the tidy.source () output for myfn()? That’s the correct style. We
should not have the left squiggly brace “}” on a separate line from the “else ,” and the right
squiggly brace “{” should be on that same line. This is, well, obviously good (in my opinion).

Why? Try this at the command line.

> i f ( x < 10) p r i n t ( ” h e l l o ”)
[ 1 ] ” h e l l o ”
> e l s e p r i n t ( ”goodbye ”)
Error : unexpected ' e l s e ' in ” e l s e ”

R does not realize that it is not yet finished with the if keyword’s work. The keyword else
appears to begin a new thought, which is illegal. The if’s help page (run help(”if ”) or ?”if ”) is
referring to this problem when it says,

In particular, you should not have a newline between ‘}’ and ‘else’ to avoid a syntax
error in entering a ‘if ... else’ construct at the keyboard or via ‘source’. For that
reason, one (somewhat extreme) attitude of defensive programming is to always use
braces, e.g., for ‘if’ clauses.

I agree with the somewhat extreme attitude, but will compromise: If one uses squiggly braces,
always follow the “} else {” policy.

Some might follow a soft line on this, suggesting only that users should not begin a line
with the word else. That does not go quite far enough for me. I’d add, always use squiggles
after else. This is simply a way of avoiding a very common coding error. This code is OK:

i f ( x < 7) p r i n t ( ”so far , so good ”) e l s e
p r i n t ( ” t h i s i s e l s e ”)

But it invites a coding error like so:

i f ( x < 7) p r i n t ( ”so far , so good ”) e l s e
p r i n t ( ” t h i s i s e l s e ”)
p r i n t ( ”and we want t h i s a l s o to be with e l s e , but i t i s not ”)

To be perfectly clear, and to protect ourselves against editing errors in the future, we could
follow the “somewhat extreme” advice and write this:

i f ( x < 7) {
pr in t ( ”so far , so good ”)

} e l s e {
pr in t ( ” t h i s i s e l s e ”)
p r i n t ( ”and we want t h i s a l s o to be with e l s e ”)

}

Counter-argument based on the R source code

This would be a completely closed case if not for the fact that the “} else {” policy is ignored
in vast expanses of the R source code. In the R source code, scan for the keyword else and in
almost every file, one finds:

}
e l s e

A naked else! This is frustrating for writers of style guides. It ignores the advice in the “if” help
page. We cannot run this code line-by-line.
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On the other hand, the function that includes that apparently runs! Why doesn’t that code
crash? When an if/else statement is enclosed in a larger area that is demarcated by squiggly
braces, then R will understand the naked else when it finds it. Observe the fix at the command
line:

> x <− 1
> {
+ i f ( x < 10) p r i n t ( ” h e l l o ”)
+ e l s e
+ pr i n t ( ”My dangl ing e l s e ”)
+ }
[ 1 ] ” h e l l o ”

I don’t think I’m going to have any luck persuading the R Core Development Team that their
naked elses need to be fixed. The best I can do is to urge code writers to use “} else {” and
make them responsible for errors that result from ignoring that rule.

One will note another interesting anomaly while reviewing R source code. Unlike programs
written in C, where a consistent style for the placement of squiggly braces will be followed,
in R we observe files that do not follow a particular rule. In src/library/src/logLik.R, we find
functions in both the K&R (Kernighan and Ritchie, 1988) C style

nobs . l ogL ik <− f unc t i on ( object , . . . ) {
r e s <− a t t r ( object , ”nobs ”)
i f ( i s . n u l l ( r e s ) ) stop ( ”no \ ”nobs\ ” a t t r i b u t e i s a v a i l a b l e ”)
r e s

}

and we also find the vertically aligned squiggly braces approach:

p r i n t . l o g L i k <− f unc t i on (x , d i g i t s = getOption ( ” d i g i t s ”) , . . . )
{

cat ( ” ' l og Lik . ' ” , paste ( format ( c ( x ) , d i g i t s=d i g i t s ) , c o l l a p s e=”
, ”) ,
” ( df=” , format ( a t t r (x , ”df ”) ) , ”) \n” , sep=””)

i n v i s i b l e ( x )
}

I am at a loss to explain these stylistic variations, so I conclude that R users can follow either
style, while keeping in mind the “} else {” policy, which strongly pushes us toward the K&R
style.

4 How to name functions.

Now we begin to consider some issues that are more subjective. Many styles are legal, but some
are more easily understood. R syntax has changed over the years, and some things that were
illegal are now allowed. And some styles that were standard might now be discouraged.

4.1 (.98 SEA) Avoid using names that are already in use by R, especially common
ones.

Don’t write functions named “rep()”, “seq()”, “c()”, and so forth. Notice that my new function
lm() does not obliterate the one from the stats package, but it sure does make it harder to use
it.
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> lm <− f unc t i on ( z ) p r i n t ( ”Hi , I 'm z where lm was ”)
> x <− rnorm (100)
> y <− rnorm (100)
> lm ( y ∼ x )
[ 1 ] ”Hi , I 'm z where lm was ”
> s t a t s : : lm( y ∼ x )

Ca l l :
s t a t s : : lm( formula = y ∼ x )

C o e f f i c i e n t s :
( I n t e r c e p t ) x

0 .02688 0 .01796

As long as we remember that lm() is in the namespace stats, we can find it.

Similarly, packages can declare namespaces of their own. (Since R version 2.14, all packages
must do so.) We are allowed to place a new function like seq() or lm() into a package if we
want to. Nevertheless, almost everybody will hate to read code like that.

The danger that user functions might interfere with core functionality was at one time very
serious. Now it is, for the most part, a historical footnote. It is still possible to obliterate a
function that is embedded within a namespace, but doing so requires a bit of effort and mischief.6

When we say that a namespace is imported, it means that all of the functions in that namespace
can be accessed by the function’s name, without the namespace name as a prefix. We might write
base :: seq(1, 10, length.out = 40) to be clear, but we need only write seq(1, 10, length.out
= 40) because an R session imports the namespace base. I notice a trend in R to suggest that
one should not import whole namespaces unless that is truly necessary, and even if a namespace
is imported, we should strive for clarity by using syntax that includes the namespace name.
In the source code for many R examples, one will find syntax like graphics :: par() where, until
recently, that would have simply been par().

4.2 (.65 SEA)Use periods to indicate classes, otherwise don’t use periods in
function names.

Instead, use camel case to name functions. This function name mySuperThing() is better than
my.super.thing().

The period in a function name has a special meaning in the S3 object-oriented framework. A
“generic function”(such as print() or summary()) is accompanied by methods that implement its
work for particular kinds of objects, such as print.function () or print.lm(). Before the period,
we have a function’s name, and after the period, we have the class name of the object being
managed. The function name my.super.thing() suggests the user might have an object of class
“thing” and that my.super(x) would diagnose the class of x and send the work to my.super.thing
(). A camel cased function name mySuperThing() will not convey the wrong meaning.

If we were starting with a clean slate, I believe many R functions would be re-named for the
purposes of consistency. Since we do not have a clean slate, we live with an accumulation of
function names from olde S and R. Changes in computer science–the growth of object-oriented
programming–cause new naming conventions. Consider some of the traditional S function names

6In case you wonder, here’s how to cause the worst case scenario.

nseq <- function(x) print("Hello, good to see you")

assignInNamespace("seq.default", nseq, "base")
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that are still used in R, like read.table and read.csv. Those are not method implementations of
a generic function read(). The period is simply part of a shorthand of the form“action.qualifier”.
Otherwise, if one had an object of type table, then read(x) would call read.table(x). But it does
not:

> example ( t a b l e )
> c l a s s ( tab )
[ 1 ] ”xtabs ” ”ta b l e ”
> read ( tab )
Error : could not f i n d func t i on ”read ”

I believe that, if these functions were being created today, they would be named readTable()
and readCSV().

In the R source code, there are some very confusing function names and I have a hard time believ-
ing we would use them if we were re-designing everything today. The file src/library/base/read-
http.R has a function called url.show(), which follows none of the styles that I recognize. There’s
no class show and url () is not a generic function. In the “action.qualifier” tradition, it would be
show.url(). And why not showURL()? I hasten to point out that the same file includes some
camel cased functions like defaultUserAgent().

I like camel cased function names. They are common in Objective-C and Java. Some program-
mers vigorously disagree. Programmers trained in C++ seem to hate camel case names, almost
at a visceral level. As a result, we find a division of opinion on function names. As a spot
check, consider two of my favorite packages, MASS (Venables and Ripley, 2002) and car (Fox
and Weisberg, 2011). There are not many camel case function names in the MASS, where we
find brief names in lower case letters (such as boxcox()). In contrast, car calls that boxCox().
When I started using R, Professor Fox used function names with periods, but he has been sys-
tematically weeding them out and replacing them with camel case names. If those two packages
are counterbalancing each other in my mind (for and against camel case functions), the leading
packages for mixed effects models, nlme (Pinheiro et al., 2013) and lme4 (Bates et al., 2012),
weigh in on the camel case side of the ledger.

In conclusion, users should avoid gratuitous periods in function names because, after S3, the
period has special meaning in R. When a function has been declared as a generic, then that func-
tion’s name followed by a period has an object-oriented meaning. A period is not merely word
separation. New functions introduced in R tend to use either camel case names (browseVignettes
()) or underscores ( get all vars ()). Considering recent additions to R, I believe that the chance
of finding a decorative period in a new function name is almost zero. But we are still living
with an awful lot of older counter-examples.

5 How to name variables (and objects).

5.1 (1.0 SEA) Follow the “letters and numbers” rule.

R variable names must

1. begin with an alphabetical character

2. include only letters, numbers and the symbols “ ” and “.”.

They must not include “*”,”?”,”!”,”&” or other special symbols. They must not include spaces.

One peculiar side effect of this rule is that the ellipsis symbol, three periods, “...”, is actually a
legal object name. That’s three periods, which is just as legal as aaa or bbb. Many R functions
allow the argument “...”, most users don’t realize it literally is a word. When that is listed as a
function argument, then any argument that the user includes is gobbled up by “...”.
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5.2 (1.0 SEA) Never name a variable T or F.

Almost everybody (99.999%) will agree with this. These are too easily mistaken for TRUE and
FALSE values. Since R uses TRUE and FALSE as vital elements of almost all commands and
functions, and since users are allowed to abbreviate those as T or F, a horrible confusion can
develop if variables are named T or F.

Here’s some good news. R will not allow users to name variables TRUE or FALSE:

> TRUE <− 7
Error in TRUE <− 7 : i n v a l i d ( do se t ) left−hand s i d e to ass ignment

But R will not prevent the usage of T and R for variable names.

5.3 (.75 SEA) Avoid declaring variables that have the same names as widely used
functions.

This is just a handy rule of thumb now, but it used to be a “watch out for that tree!” warning.
In 2001, I created a variable “rep” (for Republican party members) and nothing worked in my
program. In exasperation, I wrote to the r-help list, and learned that I had obliterated R’s own
function rep() with my variable. rep() is used inside many R functions and thus obliterating
it was a very serious mistake. In 2002 or so, the R system was revised so that user-declared
variables cannot “step on” R system functions. Nevertheless, it is disconcerting to me (probably
others) when users create variables with names like “lm”, “rep”, “seq”, and so forth.

5.4 (0.50 SEA) Use long names for infrequently used variables.

And use short names for variables that will be used very often.

If a variable is going to be used twice, we might as well be verbose about it. “xlog” is better
than “xl”, if we are only writing it a few times. If we are going to use a name 50 times in a 5
line program, we should choose a short one. For abbreviations, include a comment to remind
the reader what the thing stands for.

5.5 (0.10 SEA) Suggested naming scheme: keep related objects in an
alphabetically sorted scheme.

This is my personal naming scheme. Nobody but me follows this policy now, but I like it so
much I’m tacking it onto the end of this essay. I believe that R code is much more readable if
objects that “go together” begin with the common series of letters. As seen by ls(), the related
pieces should always be together. From now on, when I work with a variable named “x”, then
all transformations will begin with “x”. I will use “xlog” rather than “logx” and so forth.

Example 1. Create a numeric variable, recode it as a factor, then create the “dummy” variables
that correspond. I include the output in order to emphasize the clarity due to the alphabetical
emphasis:

> x <− r u n i f (1000 , min = 0 , max = 100)
> xf <− cut (x , breaks = c (−1 , 20 , 50 , 80 , 101) , l a b e l s = c ( ”co ld ” , ”

luke ” , ”warm” , ”hot ”) )
> xfdummies <− c o n t r a s t s ( xf , c o n t r a s t s = FALSE ) [ xf , ]
> colnames ( xfdummies ) <− paste ( ”x f ” , c ( ”co ld ” , ”luke ” , ”warm” , ”hot

”) , sep=””)
> rownames ( xfdummies ) <− names ( x )
> dat <− data . f rame (x , xf , xfdummies )
> head ( dat )
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x xf x f c o l d x f l uke xfwarm xfhot
1 72 .09039 warm 0 0 1 0
2 87 .57732 hot 0 0 0 1
3 76 .09823 warm 0 0 1 0
4 88 .61246 hot 0 0 0 1
5 45 .64810 luke 0 1 0 0
6 16 .63718 co ld 1 0 0 0

I have not included the output of these code chunks, but the alphabetical emphasis is demon-
strated in them.

Example 2. Estimate a regression, calculate summary information.

> s e t . s e e d (12345)
> x1 <− rnorm (200 , m = 300 , s = 140)
> x2 <− rnorm (200 , m = 80 , s = 30)
> y <− 3 + 0 . 2 * x1 + 0 . 4 * x2 + rnorm (200 , s =400)
> dat <− data . f rame ( x1 , x2 , y ) ; rm( x1 , x2 , y )
> m1 <− lm ( y ∼ x1 + x2 , data = dat )
> m1summary <− summary(m1)
> m1se <− m1summary$sigma
> m1rsq <− m1summary$ r . squa r ed
> m1coef <− m1summary$ c o e f
> m1aic <− AIC(m1)

Example 3. Run a regression, collect mean-centered and residual centered variants of it.

> l i b r a r y ( rockcha lk )
> dat$y2 = with ( dat , 3 + 0 .02 * x1 + 0 .05 * x2 + 2 .65 * x1 *x2 +

rnorm (200 , s =4000) )
> par ( mfcol=c (1 , 2 ) )
> m1 <− lm( y2 ∼ x1 + x2 , data = dat )
> m1i <− lm( y2 ∼ x1 * x2 , data = dat )
> m1ps <− p l o t S l o p e s (m1, p lo tx = ”x1 ” , modx = ”x2 ”)
> m1ips <− p l o t S l o p e s ( m1i , p lo tx = ”x1 ” , modx = ”x2 ”)
> m1imc <− meanCenter ( m1i )
> m1irc <− r e s i dua lCent e r ( m1i )

6 Conclusion

R can be understood at several levels, varying in sophistication from an elementary statistics
course or to an advanced platform for the development of computer programming concepts. In
the future, I will be more cautious to teach new R users about coding style. I intend to prevent
the accumulation of bad habits that result in code that is difficult to read and hard to debug.

Users who ask for help in the r-help email list 7 or on web forums 8 are well advised to remember
the importance of style. Most newcomers believe that the experts will understand what they
write, but that’s not true. Experts will find it much easier to spot errors in code that has
the correct indentation and uses a proper naming scheme for variables and functions. In my
experience, the most likely source of trouble in R code is not actually the style, but rather poor

7http://www.r-project.org/mail.html
8e.g., http://stackoverflow.com/questions/tagged/r

12

http://www.r-project.org/mail.html
http://stackoverflow.com/questions/tagged/r


compartmentalization of separate calculations. The potential to compartmentalize, however, is
obscured by bad style.

When users throw together 2000 lines of spaghetti code with no indentation (I can point to
examples on CRAN), there’s almost no chance than anyone except the author will be able to
understand and extend that kind of code. Ugly code writers will respond, “my ugly code runs!”
That misses the point. Coding style is not about making things “work,” it is about making
them work in a way that is understood by the widest possible audience. And where possible,
the code should be re-usable and extended to other purposes.
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